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Abstract
The sound absorption coefficient, α, of expanded liquid mercury has been
measured by means of the ultrasonic pulse-echo method at 20, 32 and 44 MHz
in the temperature and pressure range up to 1600 ◦C and 210 MPa. Besides the
critical attenuation, we have observed the secondary maximum in the density
dependence of α/f 2 around 9 g cm−3, where the metal–nonmetal (M–NM)
transition occurs. When the frequency increases, the secondary maximum
of α/f 2 tends to be smaller, which suggests that some kind of relaxation
process takes place in the M–NM transition range of liquid mercury. We have
separated the observed sound attenuation into the critical attenuation and the
anomalous attenuation in the M–NM transition region utilizing the difference
of the frequency dependence between the two components. Assuming a Debye-
type relaxation model for the relaxation process due to the M–NM transition,we
have estimated the relaxation time, τ , and the relative strength of the relaxation,
β r/β0 ≡ (β0 − β∞)/β0, where β0 and β∞ are the adiabatic compressibility
in the low-frequency and the high-frequency limit, respectively. The resultant
τ is about 2 ns and almost independent of density. On the other hand, β r/β0

depends on density and has a broad maximum (∼4%) around 8.5 g cm−3.

1. Introduction

The liquid–gas critical point of mercury is located at 1478 ◦C and 167 MPa [1]. Experimental
studies on mercury in the wide density range including the supercritical region have revealed
that liquid Hg is transformed to a semiconducting state around 8 to 9 g cm−3 [2], which is
intermediate between the critical density (5.8 g cm−3) and the density at the melting point
(13.6 g cm−3).
1 JSPS Research Fellow.

0953-8984/01/4610293+13$30.00 © 2001 IOP Publishing Ltd Printed in the UK 10293

http://stacks.iop.org/cm/13/10293


10294 H Kohno and M Yao

Recently, we have measured the sound absorption coefficient, α, of expanded liquid Hg at
20 MHz and found two kinds of anomalous behaviour [3]. One is the critical attenuation, which
is commonly observed in various systems [4], and the other is an anomalous increase of α

around 9 g cm−3, where the metal–nonmetal (M–NM) transition occurs. A similar observation
has been reported subsequently by Kozhevnikov et al [5]. In the M–NM transition region, a
secondary maximum in the density dependence of α appears around 8.5 g cm−3. In contrast
to the critical attenuation, the height of the maximum is almost independent of temperature
at constant densities. It is known that the sound attenuation in simple liquids is given by a
sum of the thermal conductivity term, the shear viscosity term and the bulk viscosity term [6].
From the viscosity data [7] we have estimated the shear viscosity contribution to be negligibly
small. We have also estimated the thermal conductivity from the electrical conductivity data
[8] by using the Wiedemann–Franz relation [9], which reveals that the sound attenuation
is too large to be interpreted by the thermal conductivity term alone. Hence, it has been
concluded that the secondary maximum of α in the M–NM transition range should be caused
mainly by the anomalous increase of the bulk viscosity. Assuming a Debye-type relaxation
for the frequency-dependent adiabatic compressibility, we have estimated the lower and upper
limits of the relaxation time and predicted that the relaxation time should be of the order of
nanoseconds, which is considerably longer than a typical time scale (∼picosecond [10]) of
the single particle motion in the liquid state. Then it is suggested that slow dynamics should
be generated by the sound pressure in the M–NM transition range.

Various mechanisms have been proposed to explain the anomalous increase in the bulk
viscosity and most of them are concerned with the relaxation in some kind of two-state
system [11]. Conventionally, the increase in the sound attenuation is explained by a simple
model in which the increase in the bulk viscosity is attributed to the volume change between
the two states [11]. If we apply the conventionalmodel to the present Hg problem, however, the
relative volume change, �V/V , would be larger than 30%, which seems to be unphysically
large. Thus, we must take into account the change in the electronic properties due to the
M–NM transition [3].

In the present paper, we report the sound absorption coefficient, α, of liquid Hg at 32
and 44 MHz and analyse the data together with our previous data at 20 MHz [3]. The first
purpose of this paper is to confirm that the frequency dependence of α in the M–NM transition
range is consistent with the Debye-type relaxation model. The second purpose is to separate
the observed α into the critical attenuation and the anomalous attenuation due to the M–NM
transition more rigorously. The third purpose is to estimate the characteristic time of the
relaxation process accurately in the M–NM transition range.

2. Experimental procedure

The sound velocity, v, and the sound absorption coefficient, α, of liquid mercury have been
measured at 32 and 44 MHz in the temperature and pressure range up to 1600 ◦C and 210 MPa.
The measurements were carried out using a sapphire sample cell which is the same as that
described in our previous paper [3]. Single crystalline sapphire rods of 8 mm diameter were
used as buffer rods for transmitting the ultrasonic waves. Two sapphire rods were inserted
into a single crystalline sapphire tube with an inner diameter of 8 mm and outer diameter of
10 mm. The axial length of both the sapphire rods was 89 mm. A gap between the two rods
was the sample part and the sample lengths ls were 0.5 mm for the measurements at 32 MHz
and 0.4 mm at 44 MHz. The cell assembly together with two heaters were set in an internally
heated steel high-pressure vessel which was pressurized with argon gas. The temperature of
the sample part was monitored by two W–5%Re:W–26%Re thermocouples.
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Figure 1. Schematic diagram of the sample cell. TS is the transmission rate through the sample
with a thickness of lS. Definitions of the transmissivity, tIJ , and the reflectivity, rIJ , at the
interfaces are also shown.

The schematic diagram of the sample cell is shown in figure 1. The sound velocity, v,
was measured by an ultrasonic pulse transmission/echo method [12, 13]. Z-cut Pb(Zr · Ti)O3

transducers were bonded to the cold ends of the sapphire rods. We used the third harmonics
for both frequencies.

The sound absorption coefficient α can be deduced from

α = − ln TS

lS
(1)

where Ts is the transmission rate through the sample. In contrast to the ambient conditions,
where Ts can be measured by varying the sample thickness ls, it is difficult to change ls
in situ under high temperature and pressure. Hence, we have estimated the transmission rate
TS(A → B) through the sample from A to B using the following equation:

TS(A → B) = VAB√
VAAVBB

√|rAS||rBS|
|tAS||tSB|

√
αBβA

αAβB
. (2)

Similarly, the transmission rate from B to A, TS(B → A), is expressed as

TS(B → A) = VBA√
VAAVBB

√|rAS||rBS|
|tBS||tSA|

√
αAβB

αBβA
. (3)

Here VAB (V BA) is the voltage of the sound pulse which is transmitted through the rod A (B),
the sample and the rod B (A) successively and reaches the transducer B (A). VAA (VBB) is the
voltage of the echo signals reflected from the interface between the Hg sample and the buffer
rods A (B) (see figure 1). rAS (rBS) is the reflectivity of the sound pressure at the interface
between the buffer rod A (B) and the liquid sample and tAS (tSB) is the transmissivity. Both rAS

(rBS) and tAS (tSB) can be calculated from the acoustic impedance [14], which is the product
of the density and the sound velocity. αA (αB) is the efficiency of the transducer A (B) in
converting the electric voltage to the sound pressure and βA (βB) is the efficiency in the inverse
process. The last term in equations (2) and (3),

√
αBβA/αAβB, was determined by equating

TS(A → B) = TS(B → A). (4)

Further details of the present method have been described elsewhere [3, 15]. The upper limit
of the absolute error of α is evaluated to be 20% throughout the present paper. The method
for estimation of the error has been described in our previous paper [3].

The temperatures and the pressures at which the measurements were carried out are shown
in figure 2, where the bold line denotes the saturated vapour pressure curve terminated by the
liquid–gas critical point and the thin lines show the isochore lines at every 1.0 g cm−3 [16].
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Figure 2. State points at which the measurements were carried out. Two different symbols are
used depending on the frequency. The bold and thin lines denote the liquid–vapour coexistence
curve and the isochore lines at every 1.0 g cm−3, respectively.

Two different symbols are used depending on the frequency. The temperature was calibrated
by using a saturated vapour pressure curve [16]. The experimental errors in temperature and
pressure were ±5 ◦C and ±0.5 MPa, respectively.

3. Results

3.1. Sound velocity

The results of the sound velocity at 20 MHz have already been reported in our previous
paper [3]. In the present paper, we have measured the sound velocity at 32 and 44 MHz.
In accordance with the previous results at 20 MHz we have observed an inflection in the
density dependence of the sound velocity at 32 and 44 MHz around 9 g cm−3. The inflection
was first discovered by Suzuki et al [12] and confirmed in subsequent studies [3, 13, 17–19].
Comparison of the present results at 32 and 44 MHz with the previous results at 20 MHz
indicates no appreciable dispersion within the experimental uncertainties.

3.2. Sound attenuation

In figures 3(a)–(d), the sound absorption coefficient, α, at 32 and 44 MHz is plotted along
several experimental paths shown in figure 2 as a function of temperature. The symbols in
figure 3 correspond to those in figure 2. The pressure at which the experimental path crosses the
isochore line of 9 g cm−3 is shown in the figure. The error bars show the absolute error which
is estimated from the uncertainties of the transmission rate and the sample thickness [3]. The
relative error, which can be seen from the scattering of the data points, is much smaller than the
error bars. At temperatures below 1400 ◦C, α increases slowly with temperature and begins to
rise at higher temperatures. The slope of α becomes the steepest on approaching a temperature
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Figure 3. The sound absorption coefficient, α, at 32 MHz (◦) and 44 MHz (×) along several
experimental paths shown in figure 2 is plotted as a function of temperature. The pressures at
which the experimental path crosses the isochore line of 9 g cm−3 are shown in the figure. The
arrows in the figure indicate the secondary maximum of α. The solid lines in the figures are a
guide for the eyes.

corresponding to the critical density, though the peak is not attained in figures 3(a) and (b)
because α is too large to be measured. We could reach the peaks at pressures much higher
than the critical pressure. In figure 3(c), α at 32 MHz has a peak value of 66.8±12.0 cm−1

at 1532 ◦C. In figure 3(d), α at 32 and 44 MHz has peak values of 34.8±7.0 and 77.8±15.6
cm−1, respectively, at 1547±1 ◦C. Beside the critical attenuation there appears a shoulder
around 1470 ◦C in the temperature dependence of α, as shown by the arrows in figures 3(a)
and (b). At higher pressures, where the critical attenuation is reduced, the shoulder is resolved
from the critical attenuation and becomes a clear secondary maximum around 1500 ◦C,
as shown by the arrows in figures 3(c) and (d).

Since the density is the most relevant parameter for the M–NM transition, we re-plot α

near 186 MPa at 32 and 44 MHz (see figure 3(b)) together with α at 20 MHz [3] as a function
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Figure 4. The sound absorption coefficient, α, at 20 (�), 32 (◦) and 44 MHz (×) near 186 MPa is
plotted as a function of density. The data at 20 MHz are taken from our previous paper [3]. The
dashed lines denote the variations of α expected for 32 and 44 MHz from the f 2-dependence when
α at 20 MHz is taken as a standard. The solid lines denote the density dependence of α at 20, 32
and 44 MHz calculated from equation (9) by using the density dependence of βr/β0 shown by the
solid line in figure 9 with τ = 2.2 ns.

of density in figure 4. It should be noted that the secondary maximum or a hump is located in
the M–NM transition range (8–9 g cm−3) irrespective of the frequency.

We plot α at 20 MHz as a function of pressure at constant densities (7.0–10.0 g cm−3) in
figure 5. The pressure dependence of α at 32 and 44 MHz is qualitatively similar to that at
20 MHz in the common density range. At higher densities, α is small and the pressure
dependence is almost flat. When the density decreases from 8.0 g cm−3, α increases and
begins to depend on pressure and the slope becomes considerably larger around 180 MPa.
Using the present results and the thermal pressure coefficient [16], (∂P/∂T )ρ, we can deduce
the temperature coefficient, −(1/α)(∂α/∂T )ρ, which is useful to discuss the mechanism of
sound attenuation. At 180 MPa, −(1/α)(∂α/∂T )ρ at 9.0, 8.0 and 7.0 g cm−3 are estimated
to be (1.7±0.3) × 10−3, (5.6±1.1) × 10−3 and (5.0±1.0) × 10−2 K−1, respectively. It should
be underlined that −(1/α)(∂α/∂T )ρ itself varies depending on pressure or temperature at
densities lower than 8.0 g cm−3. At 7.0 g cm−3, for example, −(1/α)(∂α/∂T )ρ at 200 MPa is
about one half of that at 180 MPa. These findings suggest that the observed α is little affected
by the critical attenuation at densities higher than 8.0 g cm−3 since critical attenuation depends
strongly on temperature.

4. Discussion

In the hydrodynamic regime the sound absorption coefficient of simple liquids should be
proportional to the square of the frequency f [6]. In figure 4 we take the data of α at 20 MHz
as a standard and the values of α expected for 32 and 44 MHz from the f 2-dependence are
shown by the dashed lines in the density region above 8 g cm−3. It should be noted that the
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Figure 5. The sound absorption coefficient, α, at 20 MHz is plotted as a function of pressure at
constant densities. Several different symbols are used depending on the density ρ. The thin lines
in the figure are a guide for the eyes.

experimentally observed values of α deviate downward from the dashed lines in the M–NM
transition range and that the discrepancy grows with frequency. This finding strongly suggests
that some kind of relaxation process should take place in the M–NM transition range of Hg.

In this section, we separate the observed α into the critical attenuation αCP and the
attenuation due to the relaxation in the M–NM transition range, αM–NM, in the following three
density regions. Here we use the data at 200 MPa (see figure 6), because the critical attenuation
is not significantly large.

4.1. The density region between 8 and 10 g cm−3

At densities higher than 8 g cm−3, αCP is negligibly small (see figure 5). Moreover, at densities
lower than 10 g cm−3, the shear viscosity and thermal conductivity contribution to α/f 2 are
very small compared to the bulk viscosity term [3]. Hence α at densities between 8 and
10 g cm−3 can be expressed as

α

f 2
∼= αM−NM

f 2
= 2π2

ρv3
ζ (5)

where ζ is the bulk viscosity, v is the sound velocity and ρ is the density. In general v and ζ

are related to the frequency-dependent adiabatic compressibility, β(ω), as [11],

v2 = Re(1/β(ω))

ρ
(6)

ζ = Im(1/β(ω))

ω
(7)

where ω is the angular frequency (=2π f ).
Assuming a simple Debye relaxation model for β(ω)

β(ω) = β∞ +
β0 − β∞
1 + iωτ

(8)
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Figure 6. The sound absorption coefficient divided by the square of the frequency, α/f 2, at 200
MPa for 20 MHz (�) and 44 MHz (×) is plotted against the density. The solid lines denote the
smoothed variations of α/f 2. Typical error bars are shown in the figure.

one can introduce the relaxation time τ which is a measure of the delay time for the
volume change after the application of the sound pressure. Here β0 is the static adiabatic
compressibility and β∞ is the adiabatic compressibility at frequencies beyond the radio
frequency range. The static adiabatic compressibility can be expressed as β0 = 1/ρv2

0 , where
v0 is the sound velocity at the low frequency limit. Putting equations (8) into equation (7),
we obtain the expression for ζ . By combining this with equation (5), α/f 2 can be expressed
as

α

f 2
∼= 2π2

ρv3
ζ = 2π2

ρv3

(β0 − β∞)τ

β2
0 + ω2τ 2β2∞

. (9)

By putting equation (8) into equation (6), the sound velocity can be expressed as

v2 = 1

ρ

(
1

β0
+

β0 − β∞
β∞β0

β2
∞ω2τ 2

β2
0 + β2∞ω2τ 2

)
. (10)

Then we try to deduce β0, β∞ and τ at densities higher than 8.0 g cm−3 by using equations
(9) and (10) with the data for α at 20 and 44 MHz and v at 20 MHz [3]. In figure 7, τ deduced
from the data points in figure 6 is plotted against the density using open circles. At densities
between 8.0 and 9.6 g cm−3, τ is 2.2±0.3 ns and has no appreciable dependence on density.
This result confirms our early prediction that τ should lie between 0.1 and 8 ns [3]. In figure
8, the deduced β0 and β∞ are plotted against the density using open circles and triangles,
respectively. Both β0 and β∞ increase with decreasing density. The dashed line shows
βv ≡ 1/ρv2 at 20 MHz, which is smaller than β0 by about 0.3%, as shown in the inset of
figure 8. The difference in v between 20 and 44 MHz can be calculated from the estimated β0,
β∞ and τ , and it proves to be very small (<0.5%), which is consistent with the experimental
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error bars are shown in the figure. The solid line denotes τ = 2.2 ns.
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Figure 8. The values of β0 (◦) and β∞ () deduced from the sound velocity and the sound
absorption coefficient at 200 MPa are shown plotted against the density. The variation of βv≡1/ρv2

calculated from v at 20 MHz is shown by the dashed line. The inset shows the density dependence
of the relative difference between β0 and βv,−(βv − β0)/β0.

result that no appreciable dispersion was observed. In figure 9, the relative relaxation intensity
defined by βr/β0 ≡ (β0 −β∞)/β0 is plotted using open circles. A broad maximum (about 4%)
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Figure 9. The relative relaxation intensity, βr/β0 ≡ (β0 − β∞)/β0, is plotted against the density.
The open circles denote βr/β0 deduced from equations (9) and (10) with the data points in figure 6.
The solid line shows the density dependence of βr/β0 deduced from the smoothed variations of
α/f 2 in figure 6 with constant τ (2.2 ns). The full circles denote βr/β0 deduced from αM−NM/f 2

which is separated from the total α/f 2 (see the text). The dotted line is a guide for the eyes.

seems to appear in the density dependence of βr/β0. The solid line denotes the density
dependence of βr/β0 deduced from the smoothed variations of α/f 2 shown in figure 6 with
constant τ (=2.2 ns).

In order to ascertain the validity of the Debye relaxation, we calculate α at various
frequencies by using the parameters β0, β∞ and τ and compare them with the experimental
results at different pressures. In figure 4, the solid lines denote the density dependence of α

at 20, 32 and 44 MHz calculated from equation (9) by using the density dependence of βr/β0

shown by the solid line in figure 9 with τ = 2.2 ns. The agreement between the calculated and
experimental values of α is fairly good.

4.2. The density region between 7 and 8 g cm−3

Since the critical attenuation becomes important below 8.0 g cm−3, we try to separate α into
αCP and αM−NM utilizing the difference of their frequency dependence. Theoretical studies on
the critical phenomena have predicted that the critical attenuation per wavelength, αCP

λ , should
be expressed as a function of the dimensionless frequency [4],

ω∗ = ω

2�ξ

. (11)

Here �ξ is the decay rate of the entropy fluctuation and can be written as

�ξ = Dξ−2 (12)

where ξ is the correlation length and D is the thermal diffusivity. In the low frequency limit
ω/�ξ � 1 (i.e. hydrodynamic regime), αCP

λ is proportional to ω/�ξ [4]. In the high frequency
case ω/�ξ � 1, however, ξ exceeds the thermal diffusion length and the perturbed thermal
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equilibrium cannot be restored within the period of the sound wave. Thus the frequency
dependence of αCP

λ should be suppressed compared to the linear dependence on ω. In the
marginal case ω/�ξ ≈ 1, αCP

λ on the critical isochore is given as about 0.05 from the scaling
function [20].

Since the experimental value of αλ(=αCP
λ + αM−NM

λ ) is about 0.05 at 7.0 g cm−3

(see figure 6), αCP
λ alone is smaller than 0.05 at 7.0 g cm−3 and even smaller at higher

densities. Furthermore, when one moves away from the critical region, �ξ increases and
the hydrodynamic regime is extended to a wider frequency range. Thus, we may assume
that αCP

λ is simply proportional to ω (i.e. αCP ∝ f 2) in the density range between 7.0 and
8.0 g cm−3. As for αM−NM, we adopt the following simplified expression for the Debye-type
relaxation,

αM−NM

f 2
∼= 2π2

v

βr

β0

τ

1 + ω2τ 2
(13)

because βr is much smaller than β∞, as shown in the previous section. Hence the total sound
attenuation can be written as

α

f 2
= αM−NM

f 2
+

αCP

f 2
= A

1 + ω2τ 2
+ B. (14)

At densities from 8.0 to 9.6 g cm−3, τ has been estimated to be about 2.2 ns and
nearly constant.Assuming that τ is also independent of density even at lower densities, we
determine the density-dependent parameters A and B in equation (14) in such a way that the
experimental data at different frequencies shown in figure 6 can be reproduced. In figure 9,
the resultant values of βr/β0 are plotted against the density by full circles. The error bar shows
the uncertainty corresponding to τ = 2.2±0.3 ns. When the density decreases from 8.0 to
7.0 g cm−3, βr/β0 decreases rapidly to zero, as shown by the dotted line which is a guide for
the eyes.

4.3. Critical region

At densities lower than 7.0 g cm−3, α can be simply expressed as

α

f 2
∼= αCP

f 2
. (15)

The density dependence of αCP/f 2 at 20 MHz is shown along several experimental paths in
figure 10, in which αCP/f 2 at densities between 7.0 to 8.0 g cm−3 is deduced in the last section.
The pressure at which the experimental path crosses the critical isochore line is shown in the
figure. The large increase of the sound attenuation is observed near the critical density and the
peak becomes smaller as the pressure increases. More detailed discussion about the dynamic
critical phenomena will be presented by us in another paper [21].

5. Summary

The sound absorption coefficient, α, of expanded liquid mercury has been measured by
means of the ultrasonic pulse–echo method at 20, 32 and 44 MHz. The measurements have
been carried out in the temperature and pressure range up to 1600 ◦C and 210 MPa. In
addition to the critical attenuation, we have observed a secondary maximum in the density
dependence of α around 9 g cm−3, where the M–NM transition occurs. The frequency
dependence of the secondary maximum suggests the existence of a relaxation process in the
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Figure 10. The critical attenuation, αCP/f 2, at 20 MHz along several experimental paths is shown
as a function of the density. The pressure at which the experimental path crosses the critical
isochore line is shown in the figure. Several different symbols are used depending on the pressure.
The dashed lines in the figure are a guide for the eyes.

M–NM transition range. The critical attenuation is important only in the density range below
8.0 g cm−3. We have separated the observed sound attenuation into the critical attenuation and
the secondary maximum, utilizing the difference of the frequency dependence between the
two components. Assuming a Debye-type relaxation for the frequency-dependent adiabatic
compressibility, we have estimated the relaxation time to be about 2 ns in the M–NM transition
region. In a subsequent paper [22], we will suggest a simple model in which the change of the
electronic state in the M–NM transition region is taken into account and tentatively calculate
the relaxational part of the compressibility in order to explain the anomalous sound attenuation
in the M–NM transition range qualitatively.
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